Semi-Supervised K-Means DDoS Detection Method Using Hybrid Feature Selection Algorithm

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image Segmentation Using Semi-Supervised k-Means

Extracting the region of interest is a very challenging task in Image Processing. Image segmentation is an important technique for image processing which aims at partitioning the image into different homogeneous regions or clusters. Lots of general-purpose techniques and algorithms have been developed and widely applied in various application areas. In this paper, a Semi-Supervised k-means segm...

متن کامل

Forward Semi-supervised Feature Selection

Traditionally, feature selection methods work directly on labeled examples. However, the availability of labeled examples cannot be taken for granted for many real world applications, such as medical diagnosis, forensic science, fraud detection, etc, where labeled examples are hard to find. This practical problem calls the need for “semi-supervised feature selection” to choose the optimal set o...

متن کامل

Adaptive Distributed Intrusion Detection using Hybrid K-means SVM Algorithm

Assuring secure and reliable operation of networks has become a priority research area these days because of ever growing dependency on network technology. Intrusion detection systems (IDS) are used as the last line of defence. IDS identifies patterns of known intrusions (misuse detection) or differentiates anomalous network data from normal data (anomaly detection). In this paper, a novel Intr...

متن کامل

BASSUM: A Bayesian semi-supervised method for classification feature selection

Feature selection is an important preprocessing step for building efficient, generalizable and interpretable classifiers on high dimensional data sets. Given the assumption on the sufficient labelled samples, the Markov Blanket provides a complete and sound solution to the selection of optimal features, by exploring the conditional independence relationships among the features. In real-world ap...

متن کامل

Semi-supervised Text Categorization Using Recursive K-means Clustering

In this paper, we present a semi-supervised learning algorithm for classification of text documents. A method of labeling unlabeled text documents is presented. The presented method is based on the principle of divide and conquer strategy. It uses recursive K-means algorithm for partitioning both labeled and unlabeled data collection. The K-means algorithm is applied recursively on each partiti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2019

ISSN: 2169-3536

DOI: 10.1109/access.2019.2917532